Wastewater treatment generates solids requiring subsequent processing. Costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) are challenging widely used landfilling and land application practices. These circumstances are partly driving the re-emergence of pyrolysis and gasification technologies along with beneficial reuse prospects of the char solid residual. Previously, technologies experienced operational challenges leading to revised configurations, such as directly coupling a thermal oxidizer to the reactor to destroy tar forming compounds. This paper provides an overview of pyrolysis and gasification technologies, characteristics of the char product, air emission considerations, and potential fate of PFAS and other pollutants through the systems. Results from a survey of viable suppliers illustrate differences in commercially available options. Additional research is required to validate performance over the long-term operation and confirm contaminant fate, which will help determine whether resurging interest in pyrolysis and gasification warrants widespread adoption. DOI: 10.1002/wer.10701
Lloyd J. Winchell
Pyrolysis and gasification at water resource recovery facilities: Status of the industry
Authors: Lloyd J. Winchell, John J. Ross, Dominic A. Brose, Thais B. Pluth, Xavier Fonoll, John W. Norton Jr, Katie Y. Bell
Water Environment Research
Recent Papers and Reports
- Microplastics from different viewpoints
- Using Artificial Intelligence and Machine Learning Operations in the Water Industry
- Multi-class machine learning classification of PFAS in environmental water samples: a blinded test of performance on unknowns
- Fate of perfluoroalkyl and polyfluoroalkyl substances (PFAS) through two full-scale wastewater sludge incinerators
- An Evaluation of Biosolids Management in Maine and Recommendations for the Future
- Pathways and Barriers to Corporate Water Stewardship in the Colorado River Basin
- Transformation of organic carbon through medium pressure (polychromatic) UV disinfection of wastewater effluent during wet weather events
- Application of a fluorescence EEM-PARAFAC model for direct and indirect potable water reuse monitoring: Multi-stage ozone–biofiltration without reverse osmosis at Gwinnett County, Georgia, USA
- The Risk of the Status Quo: New Thinking to Transform Business Practice
- Preponderance of Evidence – Advances in Using Distributed Temperature Sensing to Locate and Quantify Sources of I/I