The James R. Dolorio Water Reclamation Facility in Pueblo, Colorado, uses AvN aeration controls to lower aeration energy while promoting carbon-efficient nutrient removal and hydrocyclone-based wasting to achieve SVI improvements and process intensification. The results from the full-scale installation showed that hydrocyclone-based wasting helped improve settling characteristics by reducing the SVI from 200 ± 52 mL/g to 83 ± 22 mL/g within weeks of operation. PAO and nitrifiers were preferentially retained in dense flocs and granules, while lighter heterotrophic and filamentous organisms were preferentially wasted, thus uncoupling the SRT of these two fractions relative to the overall SRT. The SRT was estimated at 14.4 ± 3.4 days for dense aggregates and 7.1 ± 2.3 days for lighter flocs. The use of AvN control with continuous low DO conditions resulted in low DO conditions (< 0.3 mgO2/L) reducing air demand by 50% while providing excellent nitrogen (effluent TIN < 11 mgN/L) and TP removal (effluent TP < 1 mgP/L) at low primary effluent COD/N ratio of 6.0. The presence of comammox was demonstrated through molecular analysis, while ex-situ batch tests revealed the presence of DPAO, which could have attributed to the energy and carbon-efficient biological nutrient removal.

Combining Continuous Flow Aerobic Granulation Using an External Selector and Carbon-efficient Nutrient Removal With Avn Control in a Full-scale Simultaneous Nitrification-denitrification Process
Authors: Pusker Regmi, Belinda Sturm, Dev Hiripitiyage, Nancy Keller. Sudhir Murthy, and Jose Jimenez
Water Research
Related Content
Sep 25, 2020
James R. DiIorio Water Reclamation Facility Ntensify® Nutrient Removal
The City of Pueblo (Pueblo) is situated 112 miles south of Denver, Colorado, and located at the confluence of the...
Recent Papers and Reports
- Transformation of organic carbon through medium pressure (polychromatic) UV disinfection of wastewater effluent during wet weather events
- Application of a fluorescence EEM-PARAFAC model for direct and indirect potable water reuse monitoring: Multi-stage ozone–biofiltration without reverse osmosis at Gwinnett County, Georgia, USA
- The Risk of the Status Quo: New Thinking to Transform Business Practice
- Preponderance of Evidence – Advances in Using Distributed Temperature Sensing to Locate and Quantify Sources of I/I
- PFAS Fate in Pyrolysis System Reflecting Full-Scale Configurations – Thermal Oxidizer Impacts
- Biogas Harvester Recovers Dissolved Biogas for Energy Production, GHG Reduction, and H2S Collection
- The Value of Inside-the-Fence Projects as Part of a Water Sustainability Program
- A novel approach to interpret quasi-collimated beam results to support design and scale-up of vacuum UV based AOPs
- Optimal Integration of Vacuum UV With Granular Biofiltration for Advanced Wastewater Treatment: Impact of Process Sequence on Cecs Removal and Microbial Ecology
- Changes in Water Demand Resulting From Pandemic Mitigations in Southeast Michigan