Management of active pharmaceutical ingredients (API) in the environment is challenging because these substances represent a large and diverse group of compounds. Advanced wastewater treatment technologies that can remove API tend to be costly. Because of the potential resources required to address API in the environment, there is a need to establish environmental benchmarks that can serve as targets for treatment and release. To date, there are several different approaches that have been taken to derive human health toxicity values for API. These methods include traditional risk assessment approaches that calculate Bsafe^ doses using experimental data and uncertainty (safety) factors; point of departure (POD), which starts from a therapeutic human dose and applies uncertainty factors; and threshold of toxicological concern (TTC), a generic approach that establishes threshold values across broad classes of chemicals based on chemical structure. To evaluate the use of these approaches, each of these methods was applied to three API commonly encountered in the environment: acetaminophen, caffeine, and chlorpromazine. The results indicate that the various methods of estimating toxicity values produce highly varying doses. Associated doses are well below typical intakes, or toxicity thresholds cannot be derived due to a lack of information. No uniform approach can be applied to establishing thresholds for multiple substances. Rather, an individualized approach will need to be applied to each target API.
Approaches to the Development of Human Health Toxicity Values for Active Pharmaceutical Ingredients in the Environment
Authors: Tamara L. Sorell
2015 AAPS Journal