Brown and Caldwell Home Page

Brown and Caldwell engineers and scientists are technical and thought leaders in the environmental sector. Meet the people who have been advancing innovation for more than 70 years.
Author      Title/Abstract      

Primary Effluent Disinfection - Necessary Procedures in UV System Design for Low Water Quality Applications
Author: Victor Moreland
Date: 10/01

Treated wastewaters to be disinfected with ultraviolet (UV) radiation can be divided into three water quality groups: 1) high ultraviolet transmittance at 254 nm (UVT254 -90 percent and above), 2) medium UVT254 (40s to 80s percent) and 3) low UVT254 (below 40 percent). High UVT254 waters are secondary effluents that have received additional treatment with micro, ultra, or nano filters and in combination with reverse osmosis, and would be an easy application for UV disinfection. Medium UVT254 waters usually are secondary effluents and sand media filtered secondary effluent, which have well established UV applications. Low UVT254 waters are primary effluents or any other lower water quality effluents that are to be disinfected with typically unknown UV reactor performance. Regardless which water quality will be disinfected, there is a four step process (using the actual wastewater) that has to considered when judging the applicability of UV disinfection. Those four steps are effluent water-quality characterization, bench-scale evaluation (collimated beam dose-response curves), pilot-scale evaluation (pilot unit dose-response curves), and full-scale evaluation (dose-response curves and microbial monitoring). Other questions that must be answered include: • What type of lamp/s would be best? Low-pressure, low-intensity or low-pressure, high-output or low-pressure, high-intensity or medium-pressure, high-intensity. • Which automatic cleaning system (mechanical or mechanical/chemical) will meet the cleaning needs? • Will fats, oils, and greases (FOG) coat lamp sleeves? • What is the wastewater velocity through the reactor and what influence does it have on the reactor efficiency? • What lamp and/or lamp sleeve configuration changes can reduce the low UVT254 water quality impacts on the reactor? The results from the bench-scale and pilot-scale evaluations will be expanded on in the paper including the physical and microbial water quality.

This library contains published materials for which copyrights may be owned by entities other than Brown and Caldwell, but which are stored for limited uses by BC employees. Technical papers authored by BC employees generally may be printed and shared electronically with clients and prospective clients outside BC. Technical papers cannot be sold, and technical papers shared outside BC must have proper attribution of the original sponsoring organization or conference where the paper was presented. This attribution is embedded in each technical paper file when it is loaded into this library. Published articles from magazines or trade journals which are stored in this library are FOR INTERNAL USE ONLY and SHOULD NOT be distributed to clients or others outside BC, without express permission of the copyright owner. For questions regarding copyrights associated with any document in this library, or questions regarding copyrights in general, contact the Legal Department.